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Abstract. Stratified sampling is a sampling method that takes into
account the existence of disjoint groups within a population and pro-
duces samples where the proportion of these groups is maintained. In
single-label classification tasks, groups are differentiated based on the
value of the target variable. In multi-label learning tasks, however, where
there are multiple target variables, it is not clear how stratified sam-
pling could/should be performed. This paper investigates stratification
in the multi-label data context. It considers two stratification methods
for multi-label data and empirically compares them along with random
sampling on a number of datasets and based on a number of evaluation
criteria. The results reveal some interesting conclusions with respect to
the utility of each method for particular types of multi-label datasets.

1 Introduction

Experiments are an important aspect of machine learning research [14,7]. In
supervised learning, experiments typically involve a first step of distributing the
examples of a dataset into two or more disjoint subsets. When training data
abound, the holdout method is used to distribute the examples into a training
and a test set, and sometimes also into a validation set. When training data
are limited, cross-validation is used, which starts by splitting the dataset into a
number of disjoint subsets of approximately equal size.

In classification tasks, the stratified version of these two methods is typically
used, which splits a dataset so that the proportion of examples of each class in
each subset is approximately equal to that in the complete dataset. Stratification
has been found to improve upon standard cross-validation both in terms of bias
and variance [13].

To the best of our knowledge, what stratification means for multi-label data
[23] and how it can be accomplished has not been addressed in the literature.
Papers conducting experiments on multi-label data use either predetermined
train/test splits that come with a dataset or the random version of the holdout
and cross-validation methods. Whether this version is the best that one can do
in terms of variance and/or bias of estimate has not been investigated.

Furthermore, random distribution of multi-label training examples into sub-
sets suffers from the following practical problem: it can lead to test subsets
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lacking even just one positive example of a rare label, which in turn causes cal-
culation problems for a number of multi-label evaluation measures. The typical
way these problems get by-passed in the literature is through complete removal
of rare labels. This, however, implies that the performance of the learning sys-
tems on rare labels is unimportant, which is seldom true. As an example consider
that a multi-label learner is used for probabilistic indexing of a large multimedia
collection, given a small annotated sample according to a multimedia ontology.
Avoiding the evaluation of the multi-label learner for rare concepts of the on-
tology, implies that we should not allow users to query the collection with such
concepts, as the information retrieval performance level of the indexing system
for these concepts would be uncertain. This limits the usefulness of the indexing
system.

The above issues motivated us to investigate in this paper the concept of
stratification in the context of multi-label data. Section 2 considers two inter-
pretations of multi-label stratification. The first one is based on the distinct
labelsets that are present in the dataset, while the second one considers each
label independently of the rest. Section 3 proposes an algorithm for stratified
sampling of multi-label data according to the second interpretation. Section 4
presents empirical results comparing the two multi-label sampling approaches
as well as random sampling on several datasets in terms of a number of evalu-
ation criteria. Results reveal some interesting relationships between the utility
of each method and particular types of multi-label datasets that can help re-
searchers and practitioners improve the robustness of their experiments. Section
5 presents the conclusions of this work and our future plans on this topic.

2 Stratifying Multi-Label Data

Stratified sampling is a sampling method that takes into account the existence of
disjoint groups within a population and produces samples where the proportion
of these groups is maintained. In single-label classification tasks, groups are
differentiated based on the value of the target variable.

In multi-label data [23], groups could be formed based on the different com-
binations of labels (labelsets) that characterize the training examples. The num-
ber of distinct labelsets in a multi-label dataset with m examples and q labels
is upper bounded by min(m, 2q). Usually this bound equals m, because in most
applications q is not very small and as a result 2q is a very large number. Ta-
ble 1 shows that, for a variety of multi-label datasets, the number of distinct
labelsets is often quite large and sometimes close to the number of examples. In
such cases, this strict interpretation of stratified sampling for multi-label data
is impractical for performing k-fold cross-validation or holdout experiments, as
most groups would consist of just a single example. Table 1 is actually sorted in
ascending order of the ratio between distinct labelsets and number of examples
and accordingly in descending order of average examples per distinct labelset.
Notice that in the last two datasets, the average number of examples per labelset
is 1 (rounded).



Table 1. A variety of multi-label datasets and their statistics: number of labels, ex-
amples, distinct labelsets and distinct labelsets per example, along with the minimum,
average and maximum number of examples per labelset and label.

dataset labels examples
label labelsets

examples

examples examples

sets
per labelset per label

min avg max min avg max

Scene [1] 6 2407 15 0.01 1 160 405 364 431 533

Emotions [21] 6 593 27 0.05 1 22 81 148 185 264

TMC2007 [20] 22 28596 1341 0.05 1 21 2486 441 2805 16173

Genbase [6] 27 662 32 0.05 1 21 170 1 31 171

Yeast [9] 14 2417 198 0.08 1 12 237 34 731 1816

Medical1 45 978 94 0.10 1 10 155 1 27 266

Mediamill [19] 101 43907 6555 0.15 1 7 2363 31 1902 33869

Bookmarks [12] 208 87856 18716 0.21 1 5 6087 300 857 6772

Bibtex [12] 159 7395 2856 0.39 1 3 471 51 112 1042

Enron2 53 1702 753 0.44 1 2 163 1 108 913

Corel5k [8] 374 5000 3175 0.64 1 2 55 1 47 1120

ImageCLEF2010 [16] 93 8000 7366 0.92 1 1 32 12 1038 7484

Delicious [22] 983 16105 15806 0.98 1 1 19 21 312 6495

We further consider a more relaxed interpretation of stratified sampling for
multi-label data, which sets as a goal the maintenance of the distribution of
positive and negative examples of each label. This interpretation views each
label independently. However, note that we cannot simply apply stratification
independently for each label, as this would lead to different disjoint subsets of
the data for each label. Such datasets are unsuitable for evaluating multi-label
learning algorithms, with the exception of the simple binary relevance approach.
Even this approach, however, could only be evaluated using measures that can
be calculated using independent computations for each label, such as Hamming
loss and macro-averaged precision, recall and F1.

Achieving this kind of stratification when setting up k-fold cross-validation
or holdout experiments on multi-label data is meaningful, because most labels in
multi-label domains are characterized by class imbalance [11,3]. The last three
columns of Table 1 show the minimum, average and maximum number of exam-
ples per label for each dataset. They give an impression of the imbalance ratios
found in multi-label domains.

Achieving this kind of stratification is expected to be beneficial, in two direc-
tions. Firstly, based on past studies of single-label data, it is expected to improve
upon random distribution in terms of estimate bias and variance [13]. Secondly,
it will lower the chance of producing subsets with zero positive examples for one
or more labels. Such subsets raise issues in the calculation of certain commonly

1 http://www.computationalmedicine.org/challenge/index.php
2 http://bailando.sims.berkeley.edu/enron email.html
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used multi-label evaluation measures, such as the macro-averaged versions of
recall, F1, area under the receiver operating characteristic curve (AUC) and
average precision3, a popular metric in multimedia information retrieval [15].

Consider for example the contingency table depicted in Fig. 1, which concerns
the predictions for a label. In the case where the test set has none positive
examples of this label, then fn = tp = 0. Given that recall is defined as tp/(tp+
fn), the value of recall for this label is undefined (0/0). If the model is correct and
doesn’t predict this label for any of the test examples, then fp = 0, rendering the
value of precision for this label undefined too (0/0), since precision is defined as
tp/(tp+fp). F1 is the harmonic mean of precision and recall, which by definition
is rendered undefined when one of precision and recall is undefined. AUC is also
undefined, because it depends on the true positive rate, which is equivalent to
recall. Average precision considers a ranking of the positively predicted examples
of a label based on some confidence value. It is the average of tp precisions,
Precisioni, i = 1 . . . tp, where Precisioni is the precision computed for the
positively predicted examples ranked higher or equally to the ith true positive
example in this ranking. Since tp = 0, average precision is also undefined. Macro-
averaging means taking the average of a measure across all labels. If a measure
is undefined for one of the labels, its average across all labels is also undefined.

predicted

negative positive

actual
negative tn fp

positive fn tp

Fig. 1. Contingency table concerning the predictions for a label

3 Iterative Stratification

We here propose an algorithm for achieving the relaxed version of multi-label
stratification that we discussed in Sect. 2. The pseudo-code is given in Algorithm
1. The input to the algorithm is a multi-label data set, D, annotated with a set
of labels L = {λ1, ..., λq}, a desired number of subsets k and a desired proportion
of examples in each subset, r1, . . . rk. For example, if we would like to use the
algorithm for performing 10-fold CV, then k should be 10 and r1 = . . . = rk
should be 1/10.

The algorithm starts by calculating the desired number of examples, cj , at
each subset, Sj , by multiplying the number of examples, |D|, with the desired
proportion for this subset rj (lines 1-3). It then calculates the desired number
of examples of each label λi at each subset Sj , c

i
j , by multiplying the number

3 The macro-averaged version of average precision is more commonly called mean
average precision (MAP) in information retrieval



Algorithm 1: IterativeStratification(D,n, r1 . . . rn)

Input: A set of instances, D, annotated with a set of labels L = {λ1, ..., λq},
desired number of subsets k, desired proportion of examples in each
subset, r1, . . . rk (e.g. in 10-fold CV k = 10, rj = 0.1, j = 1 . . . 10)

Output: Disjoint subsets S1, . . . Sk of D

1 // Calculate the desired number of examples at each subset
2 for j ← 1 to k do
3 cj ← |D|rj

4 // Calculate the desired number of examples of each label at each subset
5 for i← 1 to |L| do
6 // Find the examples of each label in the initial set

7 Di ← {(x, Y ) ∈ D : λi ∈ Y }
8 for j ← 1 to k do
9 cij ← |Di|rj

10 while |D| > 0 do
11 // Find the label with the fewest (but at least one) remaining examples,
12 // breaking ties randomly

13 Di ← {(x, Y ) ∈ D : λi ∈ Y }
14 l← argmin

i
(|Di|)

∩
{i : Di ̸= ∅}

15 foreach (x, Y ) ∈ Dl do
16 // Find the subset(s) with the largest number of desired examples for this
17 // label, breaking ties by considering the largest number of desired examples,
18 // breaking further ties randomly

19 M ← argmax
j=1...k

(clj)

20 if |M | = 1 then
21 m ∈M

22 else
23 M ′ ← argmax

j∈M
(cj)

24 if |M ′| = 1 then
25 m ∈M ′

26 else
27 m← randomElementOf(M ′)

28 Sm ← Sm

∪
{(x, Y )}

29 D ← D \ {(x, Y )}
30 // Update desired number of examples
31 foreach λi ∈ Y do
32 cim ← cim − 1

33 cm ← cm − 1

34 return S1, . . . , Sk



of examples annotated with that label, |Di|, with the desired proportion for
this subset rj (lines 5-9). Note that both cj and cij will most often be decimal
numbers, but this does not affect the proper functioning of the algorithm.

The algorithm is iterative (lines 10-33). It examines one label in each itera-
tion, the one with the fewest remaining examples, denoted l (lines 13-14). The
motivation for this greedy key point of the algorithm, is the following: if rare
labels are not examined in priority, then they may be distributed in an undesired
way, and this cannot be repaired subsequently. On the other hand with frequent
labels, we have the chance later on to modify the current distribution towards
the desired, due to the availability of more examples.

Then, for each example (x, Y ) of this label, the algorithm selects an appropri-
ate subset for distribution. The first criterion for subset selection is the current
desired number of examples for this label clj . The subset that maximizes it gets
selected (line 19). This is also a greedy choice, since this is actually the subset
whose current proportion of examples of label l deviates more from the desired
one. In case of ties, then among the tying subsets, the one with the highest num-
ber of desired examples cj get selected (line 23). This is another greedy choice,
since this is actually the subset whose proportion of examples irrespectively of
labels deviates more from the desired one. Further ties are broken randomly (line
27).

Once the appropriate subset, m, is selected, we add the example (x, Y ) to
Sm and remove it from D (lines 28-29). In the end of the iteration, we decrement
the number of desired examples for each label of this example at subset m, cim,
as well as the total number of desired examples for subset m, cm (lines 30-33).

The algorithm will finish as soon as the original dataset gets empty. This will
normally occur after |L| iterations, but it may as well occur in less, due to the
examples of certain labels having already been distributed. It may also occur in
more, as certain datasets (e.g. mediamill) have examples that are not annotated
with any label. One may argue that such examples don’t carry any information,
but in fact they do carry negative information for each label. These examples
are distributed so as to balance the desired number of examples at each subset.
This special case of the algorithm is not shown in the pseudocode of Algorithm
1 in order to keep it as legible as possible.

4 Experiments

4.1 Setup

We compare three techniques for sampling without replacement from a multi-
label dataset: a) random sampling (R), b) stratified sampling based on distinct
labelsets (L), as discussed in Sect. 2, and c) the iterative stratification technique
(I), as presented in Sect. 3.

We experiment on the 13 multi-label datasets that are presented in Table 1.
We have already commented on certain statistical properties of these datasets
in Sect. 2. All of them, apart from ImageCLEF2010, are available for download



from the web site of the Mulan library for multi-label learning4 where their
original source is also given. ImageCLEF2010 refers to the visual data released to
participants in the photo annotation task of the 2010 edition of the ImageCLEF
benchmark [16]. Feature extraction was performed using dense sampling with
the SIFT descriptor, followed by codebook construction using k -means clustering
with k=4096.

Following a typical machine learning experimental evaluation scenario, we
perform 10-fold cross-validation experiments on datasets with up to 15k exam-
ples and holdout experiments (2/3 for training and 1/3 for testing) for larger
datasets. Both types of experiments are repeated 5 times with different ran-
dom orderings of the training examples. The results in the following sections are
averages over these 5 runs.

4.2 Distribution of Labels and Examples

This section compares the three different sampling techniques in terms of a
number of statistical properties of the produced subsets. The notation used here,
follows that of Sect. 3. In particular, we consider a set of instances, D, annotated
with a set of labels, L = {λ1, ..., λq}, a desired number, k, of disjoints subsets
of D, S1, . . . Sk, and a desired proportion of examples in each of these subsets,
r1, . . . rk. The desired number of examples at each subset Sj is denoted cj and is
equal to |D|rj . The subsets of D and Sj that contain positive examples of label
λi are denoted Di and Si

j respectively.
The Labels Distribution (LD) measure, evaluates the extent to which the dis-

tribution of positive and negative examples of each label in each subset, follows
the distribution of that label in the whole dataset. For each label λi, the mea-
sure computes the absolute difference between the ratio of positive to negative
examples in each subset Sj with the ratio of positive to negative examples in the
whole dataset D, and then averages the results across all labels. Formally:

LD =
1

q

q∑
i=1

1

k

k∑
j=1

∣∣∣∣∣
∣∣Si

j

∣∣
|Sj | −

∣∣Si
j

∣∣ −
∣∣Di

∣∣
|D| − |Di|

∣∣∣∣∣


The Examples Distribution (ED) measure evaluates the extend to which the
number of examples of each subset Sj deviates from the desired number of
examples of that subset. Formally:

ED =
1

k

k∑
j=1

||Sj | − cj |

For the cross-validation experiments we further compute two additional mea-
sures that quantify the problem of producing subsets with zero positive examples:
a) The number of folds that contain at least one label with zero positive examples
(FZ), and b) the number of fold-label pairs with zero positive examples (FLZ).

4 http://mulan.sourceforge.net

http://mulan.sourceforge.net


Table 2 presents the afore-mentioned statistical properties (ED, LD, FZ,
FLZ) for the produced subsets in each of the 13 datasets. The best result for
each dataset and measure is underlined. The second column of the table presents
the ratio of labelsets to examples in each dataset to assist in the interpretation
of the results that follows.

We first observe that iterative stratification achieves the best performance
in terms of LD in all datasets apart from Scene, Yeast and TMC2007, where
the labelsets-based method is better. This shows that the proposed algorithm is
generally better than the others in maintaining the ratio of positive to negative
examples of each label in each subset.

We further notice that the difference in LD between iterative stratification
and the labelsets-based method grows with the ratio of labelsets over examples
(2nd column of Table 2). Indeed, when this ratio is small (e.g. ≤ 0.1), the LD
of the labelset-based method is close to that of iterative stratification, while
when it is large (e.g. ≥ 0.39), it is close to that of random sampling. This
behavior is reasonable, since as we discussed in Sect. 2, the larger this ratio is,
the more impractical the stratification according to labelsets becomes, as each
labelset annotates a very small number of examples (e.g. one or two). This also
justifies the fact that the labelsets-based method managed to overcome iterative
stratification in terms of LD in Scene, Yeast and TMC2007, as these datasets
are characterized by a small ratio of labelsets over examples.

In terms of ED, the labelsets-based and the random sampling methods achieve
the best performance in all datasets, while iterative stratification is much worse,
with the exception of Mediamill. The subsets produced by these methods pay
particular attention to the desired number of examples. Iterative stratification on
the other hand, trades-off the requirement for constructing subsets with spec-
ified number of examples in favor of maintaining the class imbalance ratio of
each label. The exception of Mediamill is justified from the fact that it con-
tains a number of examples with no positive labels, which are distributed by our
algorithm so as to balance the desired number of examples in each subset, as
discussed in the last paragraph of Sect. 3.

Finally we observe that iterative stratification produces the smallest value
for FZ and FLZ in all datasets. In the Bibtex and ImageCLEF2010 datasets in
particular, only iterative stratification leads to subsets with positive examples for
all folds. This means that only iterative stratification allows the calculation of the
multi-label evaluation measures that were mentioned in Sect. 2. All methods fail
to produce subsets with positive examples for all labels in the datasets Corel5k,
Enron, Medical and Genbase, which contain labels characterized by absolute
rarity [11] (notice in Table 1 that the minimum number of examples per label
in these datasets is just one). All methods produce subsets with at least one
positive example for all labels in the scene and emotions datasets, where the
minimum number of examples per label is large.



Table 2. Statistical properties of the produced subsets by a) random sampling, b)
labelsets-based stratification, and c) iterative stratification: Labels Distribution (LD),
Examples Distribution (ED), folds that contain at least one label with zero positive
examples (FZ), and number of fold-label pairs with zero positive examples (FLZ).

dataset labelsets
examples

stratification ED LD FZ FLZ

Scene 0.01

Random 0.42 0.0267 0 out of 10 0 out of 60

Labelsets 0.42 0.0038 0 out of 10 0 out of 60

Iterative 2.77 0.0043 0 out of 10 0 out of 60

Emotions 0.05

Random 0.42 0.0973 0 out of 10 0 out of 60

Labelsets 0.42 0.0316 0 out of 10 0 out of 60

Iterative 1.80 0.0273 0 out of 10 0 out of 60

Genbase 0.05

Random 0.32 0.0205 10 out of 10 90 out of 270

Labelsets 0.32 0.0078 10 out of 10 77 out of 270

Iterative 0.45 0.0055 10 out of 10 74 out of 270

TMC2007 0.05

Random 0.00 0.00250

Labelsets 0.00 0.00046 —

Iterative 27.4 0.00052

Yeast 0.08

Random 0.42 0.0862 1 out of 10 1 out of 140

Labelsets 0.42 0.0273 0 out of 10 0 out of 140

Iterative 3.53 0.0342 0 out of 10 0 out of 140

Medical 0.10

Random 0.32 0.0110 10 out of 10 203 out of 450

Labelsets 0.32 0.0059 10 out of 10 179 out of 450

Iterative 1.47 0.0039 10 out of 10 173 out of 450

Mediamill 0.15

Random 0.33 0.00140

Labelsets 0.33 0.00056 —

Iterative 0.33 0.00002

Bookmarks 0.21

Random 0.67 0.00026

Labelsets 0.67 0.00016 —

Iterative 71.20 0.00002

Bibtex 0.39

Random 0.50 0.0033 1 out of 10 1 out of 1590

Labelsets 0.50 0.0027 1 out of 10 1 out of 1590

Iterative 7.08 0.0006 0 out of 10 0 out of 1590

Enron 0.44

Random 0.32 0.0165 10 out of 10 95 out of 530

Labelsets 0.32 0.0132 10 out of 10 88 out of 530

Iterative 2.96 0.0050 10 out of 10 47 out of 530

Corel5k 0.64

Random 0.00 0.0026 10 out of 10 1140 out of 3740

Labelsets 0.00 0.0023 10 out of 10 1118 out of 3740

Iterative 4.20 0.0010 10 out of 10 788 out of 3740

ImageCLEF2010 0.92

Random 0.00 0.0324 4 out of 10 4 out of 930

Labelsets 0.00 0.0265 4 out of 10 4 out of 930

Iterative 4.48 0.0069 0 out of 10 0 out of 930

Delicious 0.98

Random 0.67 0.00084

Labelsets 0.67 0.00084 —

Iterative 52.47 0.00034



4.3 Variance of Estimates

This section examines how the variance of the 10-fold cross-validation estimates
for six different multi-label evaluation measures is affected by the different sam-
pling methods. Table 3 shows the six measures, categorized according to the
required type of output from a multi-label model (two representative measures
from each category). The experiments are based on the 9 out of 13 datasets,
where cross-validation was applied.

Table 3. Six multi-label evaluation measures categorized according to the required
type of output from a multi-label model.

Measure Type of Output

Hamming Loss Bipartition

Subset Accuracy Bipartition

Coverage Ranking

Ranking Loss Ranking

Mean Average Precision Probabilities

Micro-averaged AUC Probabilities

Two different multi-label classification algorithms are used for performance
evaluation: The popular binary relevance (BR) approach, which learns a single
independent binary model for each label and the calibrated label ranking (CLR)
method [10], which learns pairwise binary models, one for each pair of labels.
Similarly to iterative stratification, BR treats each label independently of the
rest. Similarly to the labelsets-based stratification, CLR considers label com-
binations, though only combinations of pairs of labels. Both BR and CLR are
instantiated using random forests [2] as the binary classification algorithm un-
derneath. We selected this particular algorithm, because it is fast and usually
highly accurate without the need of careful tuning.

Following the recommendations in [5], we will discuss the results based on the
average ranking of the three different stratification methods. The method that
achieves the lowest standard deviation for a particular measure in a particular
dataset is given a rank of 1, the next one a rank of 2 and the method with the
largest standard deviation is given a rank of 3.

Table 4 shows the mean and standard deviation of the 10-fold cross-validation
estimates for the six different measures on the 9 different datasets using BR,
along with the average ranks: a) across datasets with small ratio of labelsets over
examples (≤ 0.1), b) across datasets with large ratio of labelsets over examples
(≥ 0.39), and c) across all datasets.

Looking at the last row of the table, we first notice that random sampling has
the worst total average rank in all measures, as its estimates have the highest
standard deviation in almost all cases. Iterative stratification has an equal or
better overall rank compared to the labelsets-based method, apart from the case



Table 4. Mean and standard deviation of six multi-label evaluation measures (columns
3 to 8) computed using 10-fold cross validation, the binary relevance algorithm and the
three different sampling methods: (R)andom, (L)abelsets, and (I)terative. The first 5
rows correspond to datasets with small ratio of labelsets over examples (≤ 0.1), followed
by the average rank of each method. The next 4 rows correspond to datasets with large
ratio of labelsets over examples (≥ 0.39), followed by the average rank of each method.
The last line presents the average rank for all 9 datasets.

dataset str.
Hamming Subset

Coverage
Ranking Mean Average Micro-averaged

Loss Accuracy Loss Precision AUC

Scene

R 0.0806±0.0078 0.5938±0.0333 0.3542±0.0406 0.0543±0.0070 0.8695±0.0177 0.9612± 0.0064

L 0.0801±0.0059 0.5959±0.0279 0.3557±0.0421 0.0545±0.0082 0.8696±0.0163 0.9616± 0.0055

I 0.0805±0.0060 0.5947±0.0261 0.3573±0.0454 0.0549±0.0069 0.8699± 0.0149 0.9613±0.0058

Emotions

R 0.1809±0.0193 0.3247±0.0570 1.6528±0.1424 0.1397±0.0269 0.7568±0.0378 0.8777±0.0197

L 0.1792±0.0170 0.3299±0.0434 1.6394±0.1221 0.1367±0.0223 0.7603±0.0340 0.8804±0.0193

I 0.1786±0.0175 0.3270±0.0553 1.6453±0.1308 0.1380±0.0265 0.7616±0.0409 0.8787±0.0222

Genbase

R 0.0024±0.0013 0.9444±0.0295 0.4077±0.2308 0.0030±0.0043 NaN±NaN 0.9952±0.0075

L 0.0024±0.0012 0.9444±0.0267 0.3995±0.1968 0.0027±0.0038 NaN±NaN 0.9957±0.0063

I 0.0024±0.0011 0.9438±0.0232 0.3878±0.1808 0.0025±0.0032 NaN±NaN 0.9962±0.0054

Yeast

R 0.1892±0.0070 0.1746±0.0196 6.1383±0.1853 0.1584±0.0108 NaN±NaN 0.8533±0.0093

L 0.1884±0.0045 0.1762±0.0146 6.1236±0.1082 0.1576±0.0063 0.5358±0.0160 0.8543±0.0062

I 0.1887±0.0051 0.1757±0.0185 6.1247±0.1219 0.1578±0.0076 0.5429±0.0198 0.8539±0.0071

Medical

R 0.0153±0.0014 0.4531±0.0413 1.5570±0.4584 0.0224±0.0071 NaN±NaN 0.9789±0.0072

L 0.0151±0.0012 0.4616±0.0351 1.5022±0.3972 0.0217±0.0071 NaN±NaN 0.9798±0.0062

I 0.0151±0.0014 0.4557±0.0400 1.4497±0.3715 0.0209±0.0069 NaN±NaN 0.9803±0.0058

Average R 2.9 3 2.6 2.7 2.5 2.8

Rank L 1.2 1.4 1.6 1.9 1.5 1.4

(≤ 0.1) I 1.9 1.6 1.8 1.4 2 1.8

Bibtex

R 0.0308±0.0029 0.1015±0.0101 44.9221±1.5618 0.2130±0.0083 NaN±NaN 0.7780±0.0066

L 0.0315±0.0021 0.1025±0.0064 45.0660±1.0094 0.2140±0.0066 NaN± NaN 0.7682±0.0056

I 0.0313±0.0017 0.1029±0.0079 44.6686±1.0397 0.2181±0.0067 0.3505±0.0100 0.7691±0.0054

Enron

R 0.0475±0.0020 0.1229±0.0179 12.7126±1.0364 0.0820±0.0084 NaN±NaN 0.9138±0.0068

L 0.0474±0.0021 0.1245±0.0202 12.6388±0.8306 0.0810±0.0070 NaN±NaN 0.9148±0.0074

I 0.0474±0.0018 0.1213±0.0197 12.4571±0.6189 0.0797±0.0062 NaN±NaN 0.9165±0.0055

Corel5k

R 0.0094±0.0001 0.0032±0.0023 217.6020±5.5919 0.2717±0.0084 NaN±NaN 0.7821±0.0061

L 0.0094±0.0001 0.0022±0.0020 217.1086±4.7339 0.2708±0.0086 NaN±NaN 0.7827±0.0060

I 0.0094±0.0001 0.0026±0.0022 217.4484±4.0884 0.2701±0.0058 NaN±NaN 0.7834±0.0044

Image
R 0.0996±0.0013 0.0003±0.0006 60.5913±0.8638 0.1391±0.0025 NaN±NaN 0.8591±0.0023

CLEF2010
L 0.0997±0.0013 0.0005±0.0007 60.6276±0.8242 0.1392±0.0022 NaN±NaN 0.8589±0.0021

I 0.0997±0.0008 0.0001±0.0004 60.8236±0.6342 0.1394±0.0021 0.2338±0.0048 0.8588±0.0019

Average R 2.4 2.3 3.0 2.8 2.8

Rank L 2.4 2.0 1.8 2.0 - 2.3

(≥ 0.39) I 1.3 1.8 1.3 1.3 1.0

Average
R 2.7 2.7 2.8 2.7 2.5 2.8

Rank
L 1.7 1.7 1.7 1.9 1.5 1.8

I 1.6 1.7 1.6 1.3 2.0 1.4

of Mean Average Precision. However, these ranks are computed based only on
the two datasets where none of the measures was undefined. As already noted,
iterative stratification manages to output an estimate in two datasets more than
the labelsets-based method and three datasets more than random sampling.

We then look at the average ranks for the upper and lower part of the table
that differ in terms of the labelsets over examples ratio. We notice that in the
upper part of the table, the labelsets-based method exhibits better rank in all
measures, apart from ranking loss. On the other hand, in the lower part of the
table, iterative stratification is better than the other methods for all measures.
This reinforces the conclusion of the previous section, where we found that the
labelsets-based method is more suited to datasets with small ratio of labelsets
over examples.

As far as the measures are concerned, we notice that iterative stratification
is particularly well suited to ranking loss, independently of the ratio of labelsets
over examples. This may seem strange at first sight, as ranking loss is a measure



computed across all labels for a given test example. However, it is also true that
good ranking loss for BR depends on good probability estimates for each label,
which in turn is affected by the distribution of positive and negative examples
for each label.

Table 5 shows the mean and standard deviation of the 10-fold cross-validation
estimates for the six different measures using CLR on 5 datasets only, those
with less than 50 labels, as the quadratic space complexity of CLR resulted into
memory shortage problems during our experiments with datasets having more
than 50 labels. The last row shows the average rank of the three stratification
methods across these datasets.

Table 5. Mean and standard deviation of six multi-label evaluation measures (columns
3 to 8) computed using 10-fold cross validation, the calibrated label ranking (CLR)
algorithm and the three different sampling methods: (R)andom, (L)abelsets, and
(I)terative. The last row shows the average rank of the three stratification methods
across the datasets.

dataset str.
Hamming Subset

Coverage
Ranking Mean Average Micro-averaged

Loss Accuracy Loss Precision AUC

Scene

R 0.0807±0.0073 0.5899±0.0329 0.3943±0.0498 0.0624±0.0085 0.8246±0.0242 0.9423±0.0082

L 0.0802±0.0051 0.5918±0.0237 0.3884±0.0358 0.0613± 0.0070 0.8137±0.0218 0.9427±0.0062

I 0.0808±0.0061 0.5898±0.0267 0.3891±0.0534 0.0612±0.0082 0.8191±0.0232 0.9423±0.0083

Emotions

R 0.1803±0.0196 0.3264±0.0575 1.6522±0.1311 0.1400±0.0255 0.7240±0.0500 0.8583±0.0225

L 0.1795±0.0169 0.3272±0.0384 1.6354±0.1260 0.1365± 0.0221 0.7230±0.0371 0.8603±0.0202

I 0.1782±0.0171 0.3278±0.0553 1.6457±0.1261 0.1382±0.0237 0.7405±0.0432 0.8596±0.0221

Genbase

R 0.0024±0.0013 0.9444±0.0295 0.4743±0.2597 0.0043±0.0049 NaN±NaN 0.9907±0.0083

L 0.0025±0.0012 0.9432±0.0270 0.4651±0.2040 0.0041±0.0041 NaN±NaN 0.9913±0.0064

I 0.0024±0.0012 0.9438±0.0238 0.4879±0.1925 0.0045±0.0037 NaN±NaN 0.9898±0.0063

Yeast

R 0.1888±0.0071 0.1756±0.0183 6.0975±0.1887 0.1580±0.0109 NaN±NaN 0.8339±0.0095

L 0.1883±0.0045 0.1793±0.0143 6.0852±0.1050 0.1570± 0.0062 0.4830±0.0134 0.8346±0.0058

I 0.1883±0.0052 0.1791±0.0198 6.0895±0.1109 0.1575±0.0069 0.5670±0.0254 0.8344± 0.0059

Medical

R 0.0154±0.0014 0.4497±0.0402 2.2879±0.5601 0.0337±0.0075 NaN±NaN 0.9610±0.0100

L 0.0150±0.0012 0.4612±0.0359 2.1629±0.3853 0.0319±0.0069 NaN±NaN 0.9631±0.0073

I 0.0152±0.0013 0.4532±0.0398 2.1774±0.2709 0.0320±0.0052 NaN±NaN 0.9629±0.0052

Average
R 3.0 2.8 2.8 3.0 3.0 2.8

Rank
L 1.1 1.2 1.4 1.4 1.0 1.4

I 1.9 2.0 1.8 1.6 2.0 1.8

We here notice that random sampling again has the worst average rank, while
the labelsets-based method is better than iterative stratification, even in terms
of ranking loss. In this experiment, all datasets have a small ratio of labelesets
over examples (≤ 0.1), so according to what we have seen till now, the behavior
that we notice is partly expected.

However, if we compare the rankings in Table 5 with the rankings in the
upper part of Table 4, which contains exactly the same datasets, we notice that
for CLR the benefits of the labesets-based method are larger. We attribute this
to the fact that contrary to BR, CLR does consider combinations between pairs
of labels, and contrary to iterative stratification, the labelsets-based method
distributes examples according to label combinations.

It is also interesting to notice that the measure where iterative stratification
exhibits the best performance is again ranking loss, as in the case of BR.



5 Conclusions and Future Work

This paper studied the concept of stratified sampling in a multi-label data con-
text. It presented two different approaches for multi-label stratification and em-
pirically investigated their performance in comparison to random sampling on
several datasets and in terms of several criteria.

The main conclusion of this work can be summarized as follows:

– Labelsets-based stratification achieves low variance of performance estimates
for datasets where the ratio of distinct labelsets over examples is small,
irrespectively of the learning algorithm. It also works particularly well for
the calibrated label ranking algorithm. This could be generalizable to other
algorithms that take into account label combinations.

– Iterative stratification approach achieves low variance of performance esti-
mates for datasets where the ratio of the distinct labelsets to the number of
examples is large. This was observed when the binary relevance approach was
used, but could be generalizable to other algorithms, especially those learn-
ing a binary model for each label in one of their steps [18,4]. Furthermore,
iterative stratification works particularly well for estimating the ranking loss,
independently of algorithm and dataset type. Finally, iterative stratification
produces the smallest number of folds and fold-label pairs with zero posi-
tive examples and it manages to maintain the ratio of positive to negative
examples of each label in each subset.

– Random sampling is consistently worse than the other two methods and
should be avoided, contrary to the typical multi-label experimental setup
found in the literature.

In this paper we mainly focused on the application of stratified sampling
to experimental machine learning, in particular producing subsets for cross-
validation and holdout experiments. Apart from the purpose of estimating per-
formance, cross-validation and holdout are also widely used for hyper-parameter
selection, model selection and overfitting avoidance (e.g. reduced error pruning
of decision trees/rules). The points of this paper are relevant for all these appli-
cations of stratified sampling in learning from multi-label data. For example, the
stratified sampling approaches discussed in this paper could be used for reduced
error pruning of multi-label decision trees [24], for down-sampling without re-
placement in the ensembles of pruned sets approach [17] and for deciding when
to stop the training of a multi-label neural network [25].

In the future, we plan to investigate the construction of a hybrid algorithm
that will combine the benefits of both the iterative and the labelsets-based strat-
ification, in order to have a single solution that will work well for any type of
dataset, classification algorithm and evaluation measure.
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